
1

King Fahd University of Petroleum & Minerals

College of Computer Science and Engineering

Information and Computer Science Department

ICS 201 – Introduction to Computing II

Summer Semester 2011-2012 (113)
SOLUTION to Major Exam 01

26th June 2012

Time: 100 minutes

Name: ___________________________________ StudentID: ___________

This exam consists of four questions. All questions must be answered.

Question# Max Marks Marks Obtained

1 1.5 * 18 = 27

2 30

3 20

4 23

Total 100

2

Q. 1 [1.5*18 = 27 marks] For each of the following statements, indicate whether TRUE or FALSE

Question Ans

1. A derived class inherits all the public methods, all the public and private instance
variables and all the public and private static variables from the base class.

TRUE

2. A derived class inherits private methods from the base class. FALSE

3. A final method of a base class cannot be over-ridden in a derived class. TRUE

4. If a base class has a method public Object clone(), then it can be overridden by a method
public String clone() in a derived class.

TRUE

5. A final class cannot be extended (cannot have derived classes). TRUE

6. The access permission of an overridden method can be changed from private in the base
class to public in the derived class.

TRUE

7. A call to super() in the constructor of the derived class must be the last statement. FALSE

8. A constructor definition can contain an invocation of this(…) and super(…), with the
invocation of this(…) before the invocation of super(…).

FALSE

9. Given two classes Letter and Alphabet, where Alphabet is a derived class of Letter, the
following is a legal statement: Letter x = new Alphabet();

TRUE

10. Given two classes Letter and Alphabet, where Alphabet is a derived class of Letter, the
following is a legal code:

Alphabet y = new Alphabet(); Letter x = (Letter) y;
TRUE

11. A protected method has a wider access as compared to a default (or package) access. TRUE

12. Within the definition of a method in a derived class, the following code is illegal: return
super.super.toString();

TRUE

13. In Java every class is a descendant of the class Object. TRUE

14. The method public boolean equals (Employee e) overrides the method public boolean
equals(Object o)

FALSE

15. What is the output of the following code:
return (new String(“abc”).getClass() == new String(“abc”).substring(2).getClass());

TRUE

16. If a class contains at least one abstract method, then it must be declared abstract. TRUE

17. All methods defined in an interface are public, static and abstract. FALSE

18. A non-static inner class can be initialized without creating an object of the outer class. FALSE

3

Q. 2 [30 marks] You have a car company that sells cars as well as rents them out to customers.

In order to keep track of each car sold or rented out, the following abstract class must be

implemented.

abstract class Car

{

 private String name;

 public abstract double total_cost();

 public String toString() { return name; }

}

Design and implement suitable classes for modeling car sale and car rental.

(a) [10 marks] CarSale: Each car sold has a base price. If a car is sold on down-payment, the
total_cost() method should return its base_price. If a car is sold on monthly

installments payable every year, the total_cost() should add 10% to the

base_price of the car per year. Your toString() method should print the name of
the car, the mode of payment (down-payment or installments), the number of
installments (use 1 for down-payment), the amount per installment and the total_cost.
(Note that there are 12 monthly installments in a year. To calculate the price per
installment, divide the total_cost by the number of installments. For down-payment, the
number of years is zero). The instance variables for this class are base_price and years.

(b) [10 marks] CarRental: Each car rented out has a base_rent. If a car is rented for one day
only, the total_cost() method should return the base_rent only. If a car is rented
out for several days, your class should calculate the total_cost() by multiplying the

number of days by the base_rent. Your toString() method should print the name of
the car, the number of days rented, base_rent and the total_cost. The instance
variables for this class are base_rent and days.

(c) [10 marks] Test your program by making a test class. Use an array of cars having the
following objects:

car[0]: Toyota, base_price: 55,000, payment-mode: installments, number of years = 2,

car[1]: Mazda, down-payment, price: 60,000.

car[2]: Nissan, car-rental, base_rent = 100/day, number of days = 30.

Use the toString() method to print the total_cost of each car, and the

combined cost of all cars..

4

class CarSale extends Car {
 private double base_price;
 private int years;

 public CarSale(String name, double bp, int y) {
 super(name);
 base_price = bp;
 years = y;
 }

 public double total_cost() {
 if(years == 0)
 return base_price;
 else
 return base_price + years * 0.1 * base_price;
 }

 public String toString() {
 String mode;
 int installments;
 if(years == 0) {
 mode = "Down_Payment";
 installments = 1;
 }
 else {
 mode = "Installments";
 installments = 12*years;
 }

 return super.toString() + ", " + mode + ", # of installments = "+installments+
 ", Amount/Installment = "+total_cost()/installments+ ", Total Cost = "+total_cost();
 }
}

class CarRental extends Car {
 private double base_rent;
 private int days;

 public CarRental(String name, double br, int d) {
 super(name);
 base_rent = br;
 days = d;
 }

5

 public double total_cost() {
 return base_rent * days;
 }

 public String toString() {
 return super.toString() + ", # of days rented = "+days+
 ", Base Rent = "+base_rent+ ", Total Cost = "+total_cost();
 }
}

public class CarTest {
 public static void main(String[] args) {
 Car[] c = new Car[3];
 double total_cost = 0;
 c[0] = new CarSale("Toyota", 55000, 2);
 c[1] = new CarSale("Mazda", 60000, 0);
 c[2] = new CarRental("Nissan", 100, 30);

 for(int i = 0; i < c.length; i++) {
 System.out.println(c[i]);
 total_cost += c[i].total_cost();
 }

 System.out.println("Total Cost for all Cars = "+total_cost);
 }
}

6

Q. 3 [20 marks] Consider the following interface:

interface SpecialNumber {

 double realValue();

 SpecialNumber simplify();

}

Design and implement a class Fraction that implements the interface SpecialNumber. Each
fraction should have a numerator (integer) and a denominator (integer). The method
realValue() should return the decimal value of the fraction as a double. The method simplify()
should return a fraction in its simplest form by removing common factors from the numerator
and the denominator. Include a toString() method also.

For example the following code can be executed in the main class,
SpecialNumber s = new Fraction(2, 4);
System.out.println(s + “ = “ s.simplify() + “ = ” + s.realValue()); //Output is 2/4 = 1/2 = 0.5

class Fraction implements SpecialNumber {
 int num, den;

 public Fraction(int n, int d) {
 num = n; den = d;
 }

 public double realValue() {
 return 1.0*num/den;
 }

 public SpecialNumber simplify() {
 int factor = Math.min(num, den); //Assuming both are positive
 for(; factor > 1; factor--) {
 if((num % factor == 0) && (den % factor == 0)) {
 num /= factor; den /= factor;
 break; //No need for it too!
 }
 }
 return this; //Alternatively return new Fraction(num, den);
 }

 public String toString() {
 return num + "/" + den;
 }
}

7

Q. 4 [11+6+6 = 23 marks] What is the output of the following programs:

(a) public class OuterOne {
 private int x;

 public class InnerOne {
 private int y;

 public InnerOne(int y) {
 this.y = y*y*y;
 }

 public InnerOne() {
 this(1);
 x = 4;
 }

 public void innerMethod() {
 System.out.println("enclosing x is " + x);
 System.out.println("y is " + y);
 }
 }

 public OuterOne(int x) {
 this.x = x*x;
 }

 public void outerMethod() {
 System.out.println("x is " + x);
 }

 public void makeInner() {
 InnerOne anInner = new InnerOne();
 anInner.innerMethod();
 }
 public static void main(String args[]) {
 OuterOne o = new OuterOne(5);
 OuterOne.InnerOne i = o.new InnerOne(3);
 i.innerMethod();
 o.outerMethod();
 o.makeInner();
 }
}

enclosing x is 25
y is 27
x is 25
enclosing x is 4
y is 1

8

(b) class Test {
 private static int i=0;
 public Test () {
 i++;
 }
 public static void main (String[] args) {
 Test t=new Test();
 t.i=t.i+1;
 System.out.print(t.i);
 System.out.println(new Test().i);
 }
}

23

(c) class Parent {
 Parent () { }
 Parent (int x, int y) {
 System.out.println(“Created Parent”);
 }
}
class Child extends Parent {
 Child() { }
 public Child (int x, int y) { }
 public Child (int x, int y, int z) {
 this(x, y);
 System.out.println(“Created Child”);
 }
 public static void main (String[] args) {
 Parent c= new Child(1,2,3);
 }
}

Created Child

